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Decomposition of Differentials in Health Expectancies  
From Multistate Life Tables: A Research Note

Tianyu Shen, Tim Riffe, Collin F. Payne, and Vladimir Canudas-Romo

ABSTRACT  Multistate modeling is a commonly used method to compute healthy life 
expectancy. However, there is currently no analytical method to decompose the com­
ponents of differentials in summary measures calculated from multistate models. In this 
research note, we propose a derivative-based method to decompose the differentials in 
population-based health expectancies estimated via a multistate model into two main 
components: the proportion resulting from differences in initial health structure and 
the proportion resulting from differences in health transitions. We illustrate the method 
using data on activities of daily living from the U.S. Health and Retirement Study to 
decompose the sex differential in disability-free life expectancy (HLE) among older 
Americans. Our results suggest that the sex gap in HLE results primarily from differ­
ences in transition rates between disability states rather than from the initial health 
distribution of female and male populations. The methods introduced here will enable 
research­ers, includ­ing those work­ing in fields other than health, to decom­pose the rel­
ative contribution of initial population structure and transition probabilities to differ­
ences in state-spe­cific life expec­tan­cies from mul­ti­state mod­els.

KEYWORDS  Multistate life table  •  Decomposition  •  Disability-free life expectancy  •  
Formal demography  •  Health

Introduction

Decomposition meth­ods com­prise a suite of both index-spe­cific and gen­er­al­ized 
approaches to decompose differences between summary indices into contributions 
resulting from their underlying parameters. For the case of healthy (or disability-free) 
life expectancy decomposition, the approaches include both applications of gener­
al­ized decom­po­si­tion (Andreev et al. 2002) and index-spe­cific pro­pos­als (Gu et al. 
2009; Nusselder and Looman 2004; Sauerberg and Canudas-Romo 2022; Shkolnikov 
and Andreev 2017). These approaches have been applied to and developed for the 
case of healthy life expectancy calculated with a life table and health prevalence by 
age (Sullivan 1971), and each estimates the contribution of differences in health prev­
alence and mortality to the differences in health expectancy.

A potential drawback to a Sullivan-based approach is that this method uses only 
aggregated mortality information from all health states and the health prevalence 
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resulting from the transitions between states. Hence, the effects of health state tran­
sitions in shaping healthy life expectancy cannot be captured in the decomposition. 
When mortality rates differ by health states, differences in mortality between pop­
ulations are likely to be driven by the underlying transitions between health states. 
The multistate life table can better illuminate the dynamics underlying healthy life 
expectancy using information on transitions between health states and mortality pat­
terns spe­cific to each health state. Despite the util­ity of the mul­ti­state model, there has 
been limited development of methods for decomposing multistate health expectancy.

This research note proposes a method to decompose health expectancies computed 
from population-based multistate life tables using a mathematical derivative-based 
decom­po­si­tion approach anal­o­gous to the gen­er­al­ized approach of Caswell (1989). 
Differences in health expectancies are decomposed into the portion driven by the ini­
tial (radix) distribution of population health characteristics and the portion resulting 
from differences in transition rates between health states. To demonstrate the method, 
we decompose the sex differential in the disability-free and disabled life expectancy 
of females and males in the United States into the part due to differences in transition 
probabilities between health states and the portion resulting from differences in the 
initial distribution of health states. This decomposition yields new insights into the 
components underlying differences in multistate life expectancies.

Methods

In the single-decrement life table, we usually start with the estimation of the age- 
spe­cific prob­a­bil­i­ties of sur­viv­ing, px, from the observed age-spe­cific death rate. With 
the px, the survival function, lx, is derived recursively as lx = lx−1px−1= lα pα pα+1…
px−1 = lα pkk =α

x−1∏ , where lα  is the survival at radix age, α . The life table number of person- 

years lived between age x  and x +1, Lx, can then be approximated as Lx=
lx + lx+1
2

,
  

assuming deaths are uniformly distributed in the age interval. Life expectancies 
defined in bounded age lim­its, that is, tem­po­rary life expec­tancy (Arriaga 1984), can 

be calculated as β−α eα = x=α
β∑ Lx
lα

, where α and β are the lower and upper limits of the 

range of ages of interest to study. Any life expectancy at age α can also be calculated 
by studying the mortality starting at that age, that is, a life table starting at age α with 
radix lα = 1.

Multistate life tables inherit similar functions and equations from the single- 
decrement life tables and they “are best dealt with by adopting matrix notation” 
(Schoen 1988:63). For a multistate life table with n states, 1,2,…, n, the matrix of 
transition probabilities at a given age x is an n-by-n square matrix,

Px =

px11 px12 ! px1n

px21 px22 ! px2n

! ! " !

pxn1 pxn2 ! pxnn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

,
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1677Decomposition of Differentials in Health Expectancy

where pxij  represents the transition probability from state i  to j  between ages x  and 
x +1. Like in a single-decrement life table starting from age α, the survival matrix lx 
can be calculated based on the transition probabilities as

			   lx = lx−1Px−1= lα Pkk =α
x−1∏ , � (1)

where the product operator Pkk =α
x−1∏  invokes matrix products. This survivorship func­

tion at age x is also a square matrix, represented as

lx =

lx11 lx12 ! lx1n

lx21 lx22 ! lx2n

! ! " !

lxn1 lxn2 ! lxnn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

,

where lxij is the proportion of people with initial state i at radix age α and in state j at 
age x (Willekens and Rogers 1978). This defi­ni­tion can also be found in Eq. (1), as 
the rightmost term, the product of Px, can be seen as one n-by-n matrix multiplying 
the radix survival matrix at age α. The radix of the survival matrix is a special case 
as i and j are the same,

lα =

lα11 0 ! 0
0 lα22 ! 0
! ! " !

0 0 ! lαnn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

,

where lαii are the initial proportions of people at state i at the radix age α of the mul­
tistate life table. The diagonal in this matrix adds up to 100% of the initial popula­
tion, so lαii = 1i=1

n∑  when computing the population-based multistate life expectancy 
(Crimmins et al. 1994).

As in the single-decrement life expectancy, the population-based multistate life 
expectancy, β−α eα, is calculated in terms of the survival matrix as

			 
β−α

 eα = lα
2
+ lx +

lβ
2x=α+1

β−1∑ ,
�

(2)

where the lβ is the survival matrix of the last age and lx are the ones between ages  
α and β. The expectancy in multistate life table from age α to β can be represented as

β−α
 eα =

β−α
 eα11

β−α
 eα12

! β−α
 eα1n

β−α
 eα21

β−α
 eα22

! β−α
 eα21

! ! " !

β− x
 eαn1 β−α

 eαn2
! β−α

 eαnn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

,

where β−α eαij  corresponds to the expected contribution to population-based life exp­
ectancy in state j  from age α to β for individuals in initial state i at exact age α, 

D
ow

nloaded from
 http://read.dukeupress.edu/dem

ography/article-pdf/60/6/1675/2039041/1675shen.pdf by guest on 10 August 2024



1678 T. Shen et al.

weighted by the initial population structure. The sum of the elements in each column 
is the expectancy in each state by persons alive at exact age α, irrespective of their 
initial state (Schoen 1988).

Following the procedure in Vaupel and Canudas-Romo (2003), we let a dot on 
top of a function denote the derivative either with respect to time or in our case a 
between-pop­u­la­tion com­par­i­son (as done in Canudas-Romo and Guillot 2015). This 
comparison between two populations in the multistate temporary life expectancy can 
be calculated as the derivative for each of the additive components in Eq. (2),

			 
β−α

 
!eα =
!lα
2
+ !lx +

!lβ
2x=α+1

β−1∑ .
�

(3)

The theory of matrix calculus is detailed in Magnus and Neudecker (2019) and the 
calculation procedure can be found in the online appendix. Similarly, the derivative 
in the survival matrix in Eq. (1) for values of x ≥ α is

		
!lx = !lα Pkk =α

x−1∏ + lh !Ph Pkk =h+1
x−1∏( )h=α

x−1∑ ,
� (4)

where Pkk =h+1
x−1∏  is an identity matrix when h = x −1.

Substituting Eq. (4) into Eq. (3) and arranging terms, we obtain

		
β−α

 
!eα = !lα·β−α #α + lx !Pxx=α

β−1∑
I
2
+ β− x−1

 #x+1
⎛
⎝⎜

⎞
⎠⎟

,
�

(5)

where I is the identity matrix and β− x #x is the status-based life expectancy between 
age x and β. The latter quantity is similar to the population-based life expectancy, 
β−α

 eα, in Eq. (2), but without the product of the initial population structure, lα, calcu­

lated as β− x #x =
I
2
+ Pkk = x

h∏( )h= x
β−2∑ + k = x

β−1∏ Pk
2

. Thus, the population-based multistate 

life expectancy in Eq. (2) can be alternatively computed as the product of the initial 
population structure and status-based life expectancy, β−α eα = lα·β−α #α . For the last 
value when x = β −1, the term 0

 #β is defined as a zero matrix. Details of the cal­cu­la­
tion procedures here are included in the online appendix.

Equation (5) can be interpreted as having two terms: (1) the effect from com­
parisons between the initial population structures, denoted by !lα·β−α #α, and (2) the 
effect from the comparison between the transition matrices across ages, or the second 
term in Eq. (5). The product within the summation operator of the second term in  

Eq. (5), lx !Px
I
2
+ β− x−1

 #x+1
⎛
⎝⎜

⎞
⎠⎟
, is the age-spe­cific effect from dif­fer­ences in the tran­si­

tion matrix at age x. The sum of each column of the matrices in these two components 
is the con­tri­bu­tion to the state-spe­cific life expec­tancy com­par­i­son.

The difference in health expectancies resulting from differences in the transition 
matrices experienced by two groups can be interpreted as the combined effect of all 
the transition probabilities in the matrices. These overall health expectancy differ­
ences due to the transition matrices can be further disentangled into the individual 
effects of each transition probability, via matrix multiplication in the second term of 
Eq. (5). The effect from dif­fer­ences in any age-spe­cific tran­si­tion prob­a­bil­ity from g 
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to h (denoted as 
 
ghλ xij ) on the differential in life expectancy in state j  between ages α 

and β for individuals in initial state i (denoted as β−−α 
!eαij ) can be calculated as

			 
 
ghλ xij =

lxig !pxgj

2
+ lxig !pxgh β−− x −−1

 εx+1
hj ,

�
(6)

where lxij, !pxij, and β− x εxij are elements within matrix lx, !Px, and β− x #x, respectively, of 
the second term in Eq. (5). !Px and β− x #x are, respectively, analogous to the matrices 
Px and β−α eα  presented earlier with the elements inside replaced by !pxij and β− x εxij.  

Equation (6) can also be seen as the matrix operations of lx !Px
I
2
+ β− x−1

 #x+1
⎛
⎝⎜

⎞
⎠⎟

 in  

Eq. (5). The online appendix provides detailed calculation procedures for disentangling  
these effects. We can obtain the overall effect from differences in any transition prob­
ability, from g to h, on the differential in life expectancy in state j by summing all 
the initial states, i, and ages, x, from Eq. (6). This can be written as

			    
ghλ  

· j =  
ghλ xiji=1

n∑x=α
β−1∑ ,� (7)

with the “ · ” before j representing the aggregation by i. Equation (7) reveals that 
every probability inside the transition matrix has effects on the differential in Eq. (5) 
of every state-spe­cific life expec­tancy. The sum of these tran­si­tion-spe­cific effects 
across every transition probability,  

ghλ  
· j

h=1
n∑g=1

n∑ , is equal to the contribution to the 
state-spe­cific life expec­tancy dif­fer­ences from the tran­si­tion matrix (i.e., the sec­ond 
term in Eq. (5)). All calculations were conducted using R software (R Core Team 
2023), and the gen­er­al­iz­able R code is included in the repos­i­tory https:​/​/github​.com 
​/tyaSHEN​/HLEdecom.

Illustration

We illustrate this decomposition method by looking at the sex differential in  
disability-free life expectancy (HLE) and disabled life expectancy (ULE) from ages 
55 to 105 in the United States. This temporary life expectancy is, in this illustration, 
referred to and interpreted as the remaining life expectancy at age 55 assuming that 
no one survives beyond 105 years old. This sex differential is decomposed into the 
contribution resulting from the initial population health structure and the contribution 
from differences in transition probabilities between health states.

Data and Estimation Procedures

Our disability data are from the U.S. Health and Retirement Survey ([HRS] 2021), a 
biannual national longitudinal survey (Sonnega et al. 2014). Since 1992, the HRS has 
surveyed a longitudinal panel of approximately 20,000 individuals aged 51 or above, 
collecting information on sociodemographic, health status, wealth, income, and 
pensions. Mortality follow-up is conducted by linking the HRS sample to the U.S. 
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national death index. HRS data include sample weights and are designed to be repre­
sentative of the U.S. population. We estimate the remaining HLE by sex by aggregat­
ing data from the 2008 to 2018 waves of data col­lec­tion. Disability is con­cep­tu­al­ized 
as dif­fi­culty in doing any of the five activ­i­ties of daily liv­ing (ADLs): bath­ing, dress­
ing, eating, transferring in/out of bed, and walking across a room. Individuals are 
clas­si­fied as “dis­abil­ity-free” if they report no dif­fi­culty with ADL or “dis­abled” if 
they report dif­fi­culty with one or more ADL items, as in Payne (2022). The baseline 
of the initial population and health structure represents the average characteristics 
of respon­dents aged between 51 and 60 years old, with only the first record for each 
individual used in calculating this baseline health state distribution. The respondents 
from the 10-year age group are pooled together to create a synthetic cohort centered 
on age 55 to increase the sam­ple size and reduce uncer­tainty.

Similar to many studies estimating healthy life expectancy from a health survey, 
the transition probabilities between health states by age and sex are estimated using 
a multinomial logistic regression model to produce smoothed estimates (e.g., Cai 
et al. 2010; Huang et al. 2021; Shen and Payne 2023). We include age squared and 
the interaction between age and sex in the regression to account for potential non­
linearity in the effect of age. Our analyses include the weight from HRS (combined 
respondent weight and nursing home resident weight) and an attrition weight calcu­
lated from inverse probability weighting of sociodemographic characteristics, such 
as sex, education, race, and ethnicity. The point estimates presented are from the 
dataset collected in HRS. We resample this original dataset 500 times by bootstrap­
ping to estimate the variance in both baseline characteristics and transition proba­
bilities. The central 95% of the results based on these 500 bootstrapping resamples 
are taken as the con­fi­dence inter­vals. The state-space for our three-state exam­ple is 
illustrated in Figure 1. The two transient (or nonabsorbing) states are disability-free 
(or health, “H”) and disabled (or unhealthy, “U”), while dead (“D”) is the absorbing 
state in our model.1

Results

The initial population health structure at age 55 by sex is provided in panel A of 
Table 1. The proportions of individuals who are initially disability-free are quite 
sim­i­lar among females and males. Panel B of Table 1 presents the status-based 
HLE and ULE at age 55, where the expectancies are not weighted by the initial 
population structure from panel A. Each row represents expected years spent in 
different health states separately by initial disability status. For example, the cell 
in the top left corner (24.49) represents the expected years spent disability-free for 

1  This three-state example should result in three columns of expectancies in β−α eα (or a 3× 3 matrix). How­
ever, the third row and column of the resulting matrix do not add any useful information to our results: all 
val­ues in the third row are zero (as no indi­vid­u­als are ini­tially dead in our anal­y­sis), and the third col­umn 
rep­re­sents the life-years lost, which can be cal­cu­lated as the com­ple­ment of the sum of the two state-spe­cific  
life expectancies (Andersen et al. 2013). Therefore, the results are shown in a sim­pli­fied 2× 2 structure 
even though we use a three-state example. Of note, our decomposition method is also applicable to multi­
state life tables without an absorbing state, in which case a 3×3 matrix could be useful.
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Disability-free 

(H)
Disabled 

(U)

Dead

(D)

Fig. 1  An example of a state-space with three states and possible transitions of healthy life expectancy

Table 1  Baseline pop­u­la­tion health struc­ture (A) and sta­tus-based (B) and pop­u­la­tion-based (C)  
disability-free and disabled life expectancy (HLE and ULE, respectively), at age 55 by sex, United 
States, 2008–2018

A. Baseline Population Health Structure by Sex, l55

Initial Disability Status Females Males

Disability-Free (H) 0.88
(0.87, 0.89)

0.89
(0.88, 0.90)

Disabled (U) 0.12
(0.11, 0.13)

0.11
(0.10, 0.12)

B. Status-Based HLE and ULE by Sex, 50
 #55

Females Males

Initial State HLE ULE Total HLE ULE Total

H 24.49
(24.14, 24.88)

5.49
(5.26, 5.73)

29.98
(29.57, 30.42)

23.09
(22.63, 23.56)

3.88
(3.68, 4.08)

26.97
(26.52, 27.45)

U 19.26
(18.75, 19.81)

8.71
(8.40, 9.04)

27.97
(27.36, 28.54)

17.42
(16.83, 18.07)

6.84
(6.52, 7.15)

24.26
(23.62, 24.94)

C. Population-Based HLE and ULE by Sex, 50
 e55

Females Males

Initial State HLE ULE Total HLE ULE Total

H 21.64 4.85 26.49 20.56 3.46 24.02
U 2.24 1.01 3.25 1.90 0.75 2.65
Total 23.88

(23.51, 24.28)
5.87

(5.64, 6.12)
29.75

(29.30, 30.20)
22.47

(21.99, 22.95)
4.20

(3.98, 4.42)
26.67

(26.21, 27.18)

Notes: Panel C is cal­cu­lated using Eq. (2). 95% con­fi­dence inter­vals are shown in paren­the­ses. H = disability- 
free. U = disabled.

Source: Authors’ calculations based on the Health and Retirement Study (2021).
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a woman who is disability-free at age 55, and the cell to its right (5.49) represents 
the expected time spent with disability for a woman who is disability-free at age 55. 
Therefore, the remaining life expectancy of a woman who is disability-free at age 
55 is 29.98 years. In contrast, a woman who is disabled at age 55 has a remaining 
life expectancy of just under 28 years.

Panel C of Table 1 presents the contribution of individuals from each initial health 
state to total population-based health expectancies, 50

 e55, combining information from 
pan­els A and B. The sex dif­fer­en­tials in panel C are what we set out to decom­pose in 
this paper. The rows represent the expected contribution to the population-based health 
expectancy by initial health state, weighted by initial disability status. The row total 
is the total life expectancy (TLE) by initial health state, weighted by initial disability 
status. The main function of these margin totals is to show the additive relationship of 
the weighted average TLE (e.g., 29.75 for females) and the relationship between the 
different steps of the subsequent decomposition. The more important information of 
panel C is in the margin of each column, which is the average time an individual can 
expect to spend in each state. These “Total” fig­ures can be under­stood as the weighted 
aver­age of the cor­re­spond­ing col­umn in panel B, with the ini­tial state pro­por­tions of 
panel A used as the weights. Females on average spend 23.88 years disability-free and 
5.87 years with disability, which adds up to the TLE of 29.75 years. For males, these 
fig­ures are 22.47 and 4.20 years, respec­tively, for a total of 26.67 years of TLE at age 
55. Examination of the con­fi­dence inter­vals (CIs) in the paren­the­ses below the point 
esti­ma­tes shows that females have sig­nifi­cantly higher HLE and ULE than males. The 
contributors to these sex gaps are then explored in the decomposition (see Table 2).

Table 2 has four pan­els. Panel A is the sex gap in expec­tan­cies cal­cu­lated from 
Table 1, panel C. Panels B and C in Table 2 represent the components contributing 
to the sex gap from Eq. (5), and panel D further decomposes the contributions from 
the transition matrix based on Eq. (7). The row totals represent the sex gap in TLE by 
initial health state, weighted by initial disability status, with a total sex gap of 3.08 
years in TLE. These row totals also show the additive relationship of the decomposi­
tion. For example, the row totals in panel A (2.48 and 0.61 years for the healthy and 
unhealthy, respec­tively) are the addi­tion of the row totals of pan­els B and C. How­
ever, the primary focus should be on the “Total” (the third) row. As shown in panel A, 
females live 1.42 more disability-free years and 1.66 more disabled years than males, 
which com­bine to pro­duce a sex gap of 3.08 years of TLE. All of these fig­ures are sig­
nifi­cantly above zero (fully pos­i­tive 95% CIs). The val­ues in pan­els B and C add up 
to the cor­re­spond­ing val­ues in panel A. Panel B shows that the ini­tial health struc­ture 
contributes to small sex gaps in HLE (−0.04) and ULE (0.02), though these gaps are 
not sta­tis­ti­cally sig­nifi­cant. The val­ues in the first row are all­ neg­a­tive, reveal­ing that 
there is a slightly higher proportion of males who are initially disability-free at age 55 
as compared to females. The decomposition, however, allows us to directly identify 
how this difference in initial health state composition contributes to the overall sex 
differential in health expectancies.

Panel C of Table 2 presents the contribution of the difference in transition proba­
bility matrices to the sex gap in health expectancies at ages 55 and above. This repre­
sents the combined effect of all probabilities in the matrix on each expectancy across 
ages. The cells in panel C represent the total effect due to differences in transition 
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probabilities, net of the initial health state composition. Thus, from panel C, we con­
clude that the combined difference in health state transitions between males and 
females at ages above 55 contributes 1.46 years to the gap in HLE, 1.64 years to the 
gap in ULE, and hence 3.10 years to the gap in TLE.

Figure 2 pres­ents the age-spe­cific sex gaps in tran­si­tion prob­a­bil­i­ties, show­ing that 
the transition matrices act to widen the sex gap in both health states. The area under 
the curve corresponds to the column sum of panel C of Table 2 or the second term 
in Eq. (5). The CIs are usually wider at earlier ages because the weight, ω− x

 #x in Eq. 
(5), is much higher at earlier ages and hence the bootstrapped variance of the transi­
tion matri­ces is mag­ni­fied by this weight. Sex dif­fer­en­tials in tran­si­tion prob­a­bil­i­ties 
among the earlier ages contribute more to the gap in HLE, while transitions among 
ages above 75 predominantly contribute to the gap in ULE. These sex differentials in 
the transition matrices are the main reason for females’ advantage in HLE at younger 
ages and in ULE at older ages.

Table 2  Difference in remaining HLE at age 55 between females and males (A), its com­po­nents (B and 
C), and the further decomposition of each transition (D) for the United States, 2008–2018

A. Difference in Expectancies, 50
 !e55

Initial State HLE ULE Total

Disability-Free (H) 1.08 1.40 2.48
Disabled (U) 0.34 0.27 0.61
Total 1.42*

(0.80, 2.01)
1.66*

(1.35, 2.01)
3.08*

(2.41, 3.73)

B. From Initial Population, !l55·50
 #55 C. From Transitions,

 
x=55

104

∑ lx !Px
I
2
+ β− x−1

 #x+1
⎛
⎝⎜

⎞
⎠⎟

Initial State HLE ULE Total HLE ULE Total

H −0.17 −0.03 −0.20 1.25 1.43 2.68
U 0.13 0.05 0.18 0.21 0.21 0.42
Total −0.04

(−0.11, 0.04)
0.02

(−0.03, 0.06)
−0.02

(−0.05, 0.02)
1.46*

(0.82, 2.05)
1.64*

(1.35, 1.97)
3.10*

(2.41, 3.74)

D. From Each Transition Probability

Transition (gh)
Contribution
to Difference in LE

HH  
(stay 

healthy) HU  
(disablement)

UH  
(recovery)

UU   
(stay 

unhealthy) Total

 
ghλ  

·H 0.62
(−0.11, 1.29)

0.35
(−0.02, 0.72)

−0.20
(−0.58, 0.18)

0.69*
(0.39, 0.98)

1.46*
(0.82, 2.05)

 
ghλ  

·U 0.18*
(0.01, 0.34)

0.46*
(0.20, 0.72)

−0.05
(−0.13, 0.03)

1.06*
(0.85, 1.29)

1.64*
(1.35, 1.97)

Notes: Panel A is cal­cu­lated using Eq. (3), pan­els B and C using Eq. (5), and panel D using Eq. (7). 
95% con­fi­dence inter­vals are shown in paren­the­ses. Values with an aster­isk are sig­nifi­cantly above zero.  
H = disability-free. U = disabled.

Source: See Table 1.
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The tran­si­tion-spe­cific decom­po­si­tion of Table 2, panel C, is shown in panel D of 
that table, based on Eq. (7). This decomposition can facilitate understanding of which 
transition probability inside the transition matrix contributes the most to the sex gap. 
The difference in transition probabilities between nonabsorbing states has effects on 
the sex gap in both HLE and ULE. The sum of each row in panel D is equal to the cor­
re­spond­ing col­umn total in panel C. We find that all­ tran­si­tions except recov­ery make 
positive contributions to the sex gap in HLE and ULE, although these contributions 
are not uni­ver­sally sta­tis­ti­cally sig­nifi­cant. The con­tri­bu­tion from the prob­a­bil­ity of 
remaining healthy (  

HH λ x·H ) has a high point estimate (0.62) but its CI is also wide, 
spanning −0.11 to 1.29.

Figure 3 pres­ents the age-spe­cific con­tri­bu­tion of each tran­si­tion prob­a­bil­ity to 
dif­fer­ences in HLE (panel a) and ULE (panel b), pro­vid­ing a visu­al­i­za­tion of the 
subcomponents underlying Figure 2. The sum of all probabilities at each age in 
panel a cor­re­sponds to the age-spe­cific val­ues of the HLE (solid) line in Figure 
2. Similarly, the sum of age-spe­cific val­ues in panel b cor­re­sponds to the ULE 
(dashed) line in Figure 2. The wider CIs at younger ages result from their higher 
weight, as discussed earlier.
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Fig. 2  Contribution of transition matrices by age, lx !Px
I
2
+ β− x−1

 #x+1
⎛
⎝⎜

⎞
⎠⎟
, to the difference in remaining HLE 

at age 55 between females and males, United States, 2008–2018. Age-specific results correspond to panel 
C, Table 2, and Eq. (5). Source: See Table 1.
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Combining the results from Table 2, panel D, and Figure 3 demonstrates that tran­
sition probabilities tend to have greater impacts on time spent in destination states 
than in origin states. In other words, differences in the probability of staying healthy 
have a larger effect on HLE than on ULE. On the contrary, differences in disability 
onset have a larger effect on ULE than on HLE, though the sex differentials in the 

Fig. 3  Contribution from each transition probability by age,  
ghλ x· j, to the difference in remaining HLE at 

age 55 between females and males, United States, 2008–2018. Age-specific results correspond to panel D, 
Table 2, and Eq. (7). Source: See Table 1.
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probability of remaining unhealthy (  
UU λ x·H ) are also the biggest driver of the sex 

gap in HLE. Females’ higher probability of staying unhealthy (i.e., alive) compared 
with males, with little difference in recovery, implies lower mortality from being 
unhealthy and their advan­tage in total LE. By looking at the effect from each tran­si­
tion probability on differences in HLE and ULE, one can deduce differences in total 
LE (i.e., mortality), which is the sum of these two. The large effect of the probabil­
ity of staying alive but unhealthy after age 55 leads to females’ higher proportion 
of expected years living with disability (19.7%) compared with males’ (15.7%), as 
shown in Table 1, panel C.

In Figure 3, we find that the effects of the prob­a­bil­ity of remaining unhealthy on 
HLE concentrate in the younger ages and gradually decline after age 70. In contrast, 
its effects on ULE grow at older ages, which explains the peak of the dashed line 
in Figure 2. Females’ higher probability of staying healthy and of disablement also 
make a sig­nifi­cant and sta­ble con­tri­bu­tion to the sex gap in ULE across ages. The 
probability of recovery is the only transition probability that compresses the sex gap, 
but it is not sig­nifi­cantly below zero across age.

Discussion and Conclusion

This research note presents a method to decompose differences in population-based 
multistate life expectancies that is fundamentally different from decomposition meth­
ods based on Sullivan-based health expectancies. While Sullivan-based methods 
decompose differences in health expectancy into portions resulting from mortality 
dif­fer­ences and health prev­a­lence dif­fer­ences (Oksuzyan et  al. 2010), a multistate 
decomposition offers greater insights into how differences in transition probabili­
ties between states can result in differences in health expectancies and overall life 
expectancy.

Our multistate decomposition approach includes information on each transition, 
such as the probability of recovering from disability and remaining disabled, which 
is unavailable from the Sullivan-based decomposition. Although the Sullivan-based 
decomposition is valuable in cases where only cross-sectional data are available, our 
method pres­ents the first com­pre­hen­sive approach to decomposing mul­ti­state life 
table quantities. In our application of this method to the sex gap in health expectan­
cies in the United States, we find that remaining dis­abled, rather than recov­er­ing, is 
the largest contributor to the sex differential in both disability-free and disabled life 
expectancy. The initial population health structure is a relatively small component in 
our example, partly because the health structure at age 55 between males and females 
is very similar. Additionally, the remaining life, from 55 to 105, is long enough to 
attenuate this gap with the transition probabilities at each age (cf. Lièvre et al. 2003: 
fig­ure 2). However, the ini­tial health struc­ture could have big effects when con­sid­er­
ing remaining life expectancy at older ages or shorter temporary life expectancy (e.g., 
six years in Payne 2022). More importantly, our method not only decomposes com­
ponent effects from initial conditions and transitions but also effects from each transi­
tion between health states. For example, we can identify that, despite the large effect 
from differences in the transition matrix in our illustration, recovery from disability 
accounts for only a very small impact on the sex gap. Our results are based on the 
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most commonly used matrix algebra approach of multistate health expectancy cal­
cu­la­tions, but future stud­ies could explore other param­e­ter­i­za­tions (e.g., con­di­tional 
probability used in Moretti et al. 2023) and their sensitivity to the results.

The data used in the illustration are from the health survey and hence produce 
large CIs in the age-spe­cific results. Provided that one has access to pop­u­la­tion-level 
reg­is­ter data or vital sta­tis­tics, the method can be applied to the observed age-spe­cific 
tran­si­tion, which may reduce uncer­tainty. The method is also gen­er­al­iz­able to other 
state-spaces without absorbing states, or to abridged life tables. Moreover, it is suit­
able for ana­lyz­ing other expec­tan­cies based on mul­ti­state life tables, such as employ­
ment and marriage expectancies. Our decomposition for comparisons between 
populations can also be applied to changes over time (i.e., derivatives with respect 
to time). This decomposition could be of great use for understanding the underlying 
components contributing to the compression or expansion of morbidity.

In summary, this method enables researchers to explore the contribution of the ini­
tial population structure and the transition probabilities to the differential in expectan­
cies from multistate models, allowing for unrivaled insight into the factors underlying 
dif­fer­ences in pop­u­la­tion-level health expec­tan­cies. ■
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