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Modeling Disability-Free Life Expectancy With  
Duration Dependence: A Research Note on the Bias  
in the Markov Assumption

 Tianyu Shen and James O’Donnell

ABSTRACT  Demographic studies on healthy life expectancy often rely on the Markov 
assumption, which fails to consider the duration of exposure to risk. To address this 
limitation, models like the duration-dependent multistate life table (DDMSLT) have 
been developed. However, these models cannot be directly applied to left-censored sur
vey data, as they require knowledge of the time spent in the initial state, which is rarely 
known because of survey design. This research note presents a flexible approach for 
utilizing this type of survey data within the DDMSLT framework to estimate multistate 
life expectancies. The approach involves partially dropping left-censored observations 
and truncating the duration length after which duration dependence is assumed to be 
minimal. Utilizing the U.S. Health and Retirement Study, we apply this approach to 
compute disability-free/healthy life expectancy (HLE) among older adults in the United 
States and compare duration-dependent models to the typical multistate model with 
the Markov assumption. Findings suggest that while duration dependence is present in 
transition probabilities, its effect on HLE is averaged out. As a result, the bias in this 
case is minimal, and the Markov assumption provides a plausible and parsimonious 
estimate of HLE.

KEYWORDS  Markov assumption  •  Duration dependence  •  Multistate model  •  
Longitudinal survey data  •  Healthy life expectancy

Introduction

Multistate life tables (MSLTs) are a generalization of the life table to model processes 
involving multiple and recurrent types of events (Schoen 1988). They are most com
monly used to capture “lifetime” expectancies of time spent in the states defined by 
the state space. Recent papers have used these methods in fields spanning sociol­
ogy, demography, and epidemiology (e.g., Brown et al. 2021; Hosokawa et al. 2023;  
Neumann et al. 2022; Zaniotto et al. 2020). Almost all MSLT studies in this field 
rely on the Markov assumption. In the health context, the Markov assumption means 
that an individual’s probability of transitioning between health states is a function of 
their current health status and perhaps a set of other characteristics, including age and 
sociodemographic characteristics, but not their past health histories.
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The fallibility of this assumption has been established across social, demographic, 
health, and economic contexts, particularly in demonstrating the importance of 
duration-specific transitions (Belanger 1989; Cai et al. 2008; Crowther and Lambert 
2014; Maddox et al. 1994; O’Donnell 2021; van den Berg and van Ours 1996). In 
studies of health and disability, Maddox et al. (1994) and Cai et al. (2008) found that 
the risks of disability or impairment, along with the chances of recovery, are duration 
dependent, and specifically that prospective transition risks generally decrease the 
longer a person has been in the same health state. Although widely acknowledged as 
a potential limitation (Cha et al. 2021; Jia and Lubetkin 2020; Xu and Payne 2024), 
the Markov assumption is rarely tested or addressed, and popular multistate soft
ware, ImaCh, relies exclusively on the Markov assumption (Lièvre et al. 2003). In 
estimating multistate life expectancies, Markov models may average out the effects 
of duration dependence, preventing bias and any need for concern. However, bias is 
potentially introduced by the issue of right-censoring and the potential for duration 
dependence to impact on transition probabilities beyond survey observation windows.

Demographers and others have developed approaches for introducing duration 
dependence to multistate analyses (e.g., Steele et al. 2004; Wolf 1988). The MSLT 
with duration dependence (abbreviated to DDMSLT) has been discussed since the 
1980s following the development of a discrete-time semi-Markov approach (e.g., 
Hennessey 1980; Littman and Mode 1977). Wolf (1988) proposed a generalized 
MSLT depending on the duration of risk exposure and showed that DDMSLT, though 
inherently a non-Markovian process, embeds the Markovian component. DDMSLT 
was developed and applied to study marital transitions, in recognition that the risk 
of divorce varies by the length of time spent married (Belanger 1989; Schoen 2021; 
Wolf 1988), but is applicable to a range of contexts. The approach assumes that no 
transitions occur between intervals. While this assumption may introduce potential 
bias in the results, Wolf and Gill (2009) demonstrated that existing models, such as 
the event-history model and embedded Markov chain model, perform comparably 
under this condition. Moreover, they noted that no model could perfectly reconstruct 
the unknown underlying truth.

Duration-dependent models partially relax the Markov assumption while main-
taining computational efficiency. The popularity of the Markov assumption in health 
contexts stems from its link to biological aging (Crimmins et al. 2021; Hayflick 2007) 
and ability to simplify complex life histories. Markov models provide useful insights 
into health transitions and life expectancies based on chronological age. Including 
duration dependence adds complexity but may better capture aging by accounting 
for heterogeneity. While duration may not be a direct causal influence on health tran­
sitions, controlling for duration may help to control for heterogeneity in the aging 
process, on the premise, for example, that accelerated aging is related to extended 
durations of ill-health (Crimmins et  al. 2021). Incorporating duration dependence 
may therefore help control for variations in biological aging rates not reflected by 
chronological age alone (Levine 2013; Rockwood and Mitnitski 2007).

Left-censoring in longitudinal surveys is a common problem limiting the applica
tion of duration-dependent models. One of the key inputs is information on how long 
people have been living in their present state. However, in left-censored surveys, the 
timing of events before the observation period is unknown and we do not know how 
long respondents have been in the state in which they were first observed (Payne and 
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1717Modeling Disability-Free Life Expectancy With Duration Dependence

Kobayashi 2022; Payne et al. 2013). Solutions to this problem have been proposed 
but are imperfect (Guo 1993). Discarding all left-censored observations (Allison 
1984) is simple but involves a potentially large loss of information (Cai et al. 2006). 
As an alternative, Cai et al. (2006) suggested imputing the duration of left-censored 
observations. However, the imputation method is computationally heavy and relies 
on non-left-censored durations to impute the unobserved durations, ignoring any 
unmeasured differences between the censored and noncensored subsamples. These 
challenges contribute to gaps in understanding duration dependence in multistate out
puts, including healthy life expectancy (HLE).

This research note develops and tests options to address the gap in incorporating 
duration dependence into HLE estimates using survey data on disability transitions 
in the United States. It proposes parsimonious variations of semi-Markov multistate 
models that seek to incorporate duration dependence in ways that minimize data loss 
and bias, providing useful information to researchers in identifying and testing dura
tion dependence and its impact on HLE estimates. The twofold objectives are to mod
ify and improve the flexibility of the DDMSLT (Wolf 1988) to make it feasible on 
left-censored survey data and to enable examination of the impacts of duration depen
dence on estimates of HLE. Thus, we provide empirical evidence regarding whether 
the widely noted limitation of Markov models in ignoring duration dependence intro
duces serious bias in HLE estimates.

Methods

Models

The state space of a typical three-state Markov MSLT for estimating HLE is depicted 
in panel a of Figure 1. There are two transient states (healthy and unhealthy) and one 
absorbing state (death). If this model is by single year of age, the health state of the 
next age would depend only on the health state of the current age. A semi-Markov 
process (SMP) is very similar to the Markov model except that it assumes that the 
health state of the next age depends on the state in the current age and the duration in 
this current state (conceptually shown in panel b of Figure 1). Thus, the probabilities 
of transitioning from one state to the next in the SMP model are conditional on the 
length of time spent in the origin state.

Panel a of Figure 2 shows the state space and the pathways of transition in the 
DDMSLT model developed by Wolf (1988). DDMSLT treats duration as a cate
gorical variable and transition risks as a piecewise constant. In our application of 
DDMSLT, duration-specific transition risks remain constant within one-year inter­
vals, up to an open-ended duration category. For example, person-wave observations 
have a duration of zero years if they have been in the same state for less than one year 
(Dur 0). If an individual remains in the same health status for more than one year, 
that is indicated by Dur 1; if they remain in the same health state but advance to the 
next duration category, then Dur 2. After three years, individuals reach and remain in 
an open-ended duration category of 3+ years (Dur 3+). If their health status changes, 
they move to a new state and their duration is reset to Dur 0. An individual can die 
from any state, indicated aggregately by the blue arrows.
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The model requires a known duration for each health state and so cannot handle 
left-censored observations without duration. We propose a modification—truncated 
DDMSLT or T-DDMSLT—to allow the model to utilize some of the observations 
without a known origin. Instead of discarding all left-censored observations (Allison 
1984), we drop only observations with unknown origin up until a prespecified trun­
cation point that aligns with the open-ended duration category. In panel b of Figure 2, 
this truncation point is set to three years. In other words, any observations in which 
the individual is observed in the same state for more than three years are included in 
Dur 3+. All other left-censored observations are dropped. In section 1 of the online 
appendix, we present some examples based on hypothetical observation.

The proposed modified model can be understood as a piecewise function—a 
semi-Markov process below a certain duration, and a Markov process independent 
of duration above that point. By incorporating duration in each health state up to the 
truncation, the approach retains more information than discarding all left-censored 
observations, at the cost of assuming duration dependence is no longer important 
after a certain time.

A further modification to the model utilizing this feature—truncated DDMSLT 
with health history, or T-DDMSLT-H—is shown in panel c of Figure 2. This modifi­
cation includes an extra Markov state identifying individuals with no history of being 

a. MSLT with Markov model

b. MSLT with semi-Markov process

Healthy (H)

Dead (D)

Dur

Dur Dur

Unhealthy (U)

Healthy

Dead

Unhealthy

Fig. 1  State space of multistate life table (MSLT) models. “Dur” represents duration.
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1719Modeling Disability-Free Life Expectancy With Duration Dependence

unhealthy during the survey observation period (cf. Bardenheier et al. 2016). This 
state records left-censored observations after a truncation point (e.g., the third year) 
as healthy with no history, assuming no prior unhealthy events. The other “healthy” 
state groups individuals with a history of being unhealthy (see section 1 of the online 
appendix). As in the previous model, their transition probabilities are duration depen
dent up to the truncation point. This model better differentiates between long-term 
healthy individuals and those making transitions. By employing these different model 
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(Dur 0)

Healthy 

(Dur 1)

Healthy 

(Dur 2)
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(Dur 3+)
Healthy 

(without 

history)
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(Dur 1)

Unhealthy 

(Dur 2)

Unhealthy 

(Dur 3+)

Dead

a. Duration-dependent MSLT (DDMSLT)

b. Truncated DDMSLT (T-DDMSLT)

c. Truncated DDMSLT with history of unhealthy event (T-DDMSLT-H)
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Fig. 2  State space and transition pathway of different models. “Dur” represents duration. In panel a, 
“Dur . . .” aggregates other states with longer duration. For example, “Dur 3+” in panels b and c includes 
the states with 3 and above. “3” can be changed to any other truncation of duration. The blue arrows rep-
resent transitions to death from all states.
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1720 T. Shen and J. O’Donnell

designs in Figures 1 and 2, transition probabilities are estimated from empirical data 
and life expectancy estimates are compared.

Data

We use data from the U.S. Health and Retirement Survey ([HRS] 2023), a biannual, 
national, longitudinal survey, from Wave 5 (2000) to Wave 15 (2020). We select a 
birth cohort, 1936–1945, with an average age of about 60 in 2000, to estimate the 
cohort disability-free/healthy life expectancy.

The HRS is conducted biannually,1 so to better model duration we start by con-
verting the data to a single-year scale. This conversion has two stages. The first stage 
is based on the standard approach in the literature, in which the interwave state is 
imputed using two consecutive preceding and succeeding waves by random assign
ment (Lang and Little 2018; Payne 2022; Raymo et al. 2019). In this approach, indi
viduals with the same health status at two consecutive waves would remain in that 
state within the two-year interval. The second stage seeks to relax this assumption 
and impute unobserved interwave transitions.

Using the first imputation, we estimate the transition probabilities by age and 
sex and simulate 500,000 individual trajectories from ages 50 to 100. We impute 
the interwave health status by using one of the simulated trajectories best matched 
to the full observed history of an individual with a two-year interval and filling the 
interwave period with the simulated trajectories as that sex and age.2 Unobserved 
health transitions are imputed through these simulated trajectories and added to 
individual health histories. The transition probabilities used to simulate the trajec
tories contain Markovian properties, however, the simulated trajectories are cal
culated and constrained by the observed health status at the start and end of each 
interwave period. Nevertheless, we acknowledge that the approach may still under
state interwave transitions.

In this study, we focus on disability to derive estimates of “healthy” and 
“unhealthy” life expectancies, while acknowledging that health is a broader and more 
multidimensional aspect of life. Disability is measured by reports of difficulty in any 
of the five basic activities of daily living; individuals are classified as “disabled” or 
“unhealthy” if they report any difficulty (Freedman et al. 2002) and as “healthy” or 
“disability-free” otherwise. Mortality is captured through linkage to the U.S. death 
registry. Importantly, these models can be replicated with a wide range of indicators, 
including, for example, self-rated health and disease incidence.

1  Observation intervals are typically two years, based on age differences between interviews. Two-
year or three-year intervals are converted to annual transitions, while leaving the one-year interval 
unchanged. Intervals exceeding three years are not imputed. While not exact, this method approximates 
annual changes.
2  Typically, one individual can be matched to several simulated trajectories, which we would randomly 
select from. In rare cases, typically in older age, where no simulated trajectory can fully match an individ
ual’s observed health history, we would use the trajectory with the most matches. Observed health statuses 
remain unchanged during imputation.

D
ow

nloaded from
 http://read.dukeupress.edu/dem

ography/article-pdf/61/6/1715/2182727/1715shen.pdf by guest on 20 D
ecem

ber 2024



1721Modeling Disability-Free Life Expectancy With Duration Dependence

Estimation Procedures

We estimate and compare four models: MSLT, T-DDMSLT, T-DDMSLT-H, and a 
general SMP model in which all left-censored observations are discarded (referred 
to as T-SMP). Two sets of inputs are required to calculate the HLE: the baseline 
disability distribution and age- and duration-specific transition probabilities. The 
1936–1945 cohort was aged 55–64 in the year 2000. Because there is no duration 
information in the first wave, we discard the first five years of observation and con­
struct the baseline on the basis of respondents aged 60–69. The starting point for 
each model is therefore a cohort in their 60s, with an average age of 65 and a health 
state corresponding to the observed distribution among respondents five years into 
the survey. A similar test is conducted with the older 1926–1935 cohort at an aver
age initial age of 75 (see section 2 of the online appendix).

The models we test require us to discard varying numbers of observations. At one 
end of the spectrum, the standard Markov MSLT keeps all observations. At the other 
end of the spectrum, the T-SMP requires us to discard all left-censored (unknown 
duration) observations. In between, the proposed T-DDMSLT models require us to 
drop all left-censored observations up to prespecified truncation points. We present 
results with two truncation points: three years and five years. Four data subsets were 
used: (1) full data; (2) data dropping unknown duration of three years (Truncated 3); 
(3) data dropping five years (Truncated 5); and (4) data without unknown origins  
(no unknown).

The first significant contribution of our proposed approach is in substantially 
reducing data loss and retaining the original sample’s representativeness. Panel A of 
Table 1 presents the characteristics of the baseline of the full data for MSLT and the 
subsamples dropping unknown durations of three and five years for T-DDMSLT and 
all the unknown durations for T-SMP. Panel B of Table 1 presents the characteris
tics of the transitions in each subsample. Discarding all unknown durations severely 
reduces the sample size and observed number of transitions, while skewing the demo
graphic profile of the sample. The sample for T-SMP records substantially fewer tran­
sitions (23%) than the full data and is particularly poor in capturing transitions from 
the disability-free state (15% of the full data), reflecting the fact that most survey par­
ticipants were disability-free on first entering the study. As a result, the T-SMP sample 
is substantially skewed toward participants with a history of disability and who are 
older, less likely to be White, and less likely to have high school or postschool qualifi­
cations. By contrast, the samples for T-DDMSLT preserve 70–81% of transitions and 
retain the same demographic and socioeconomic profile as the full data.

Following common practice in the literature (e.g., Cai et al. 2010; Cai et al. 2006; 
Shen and Payne 2023), we apply multinomial logistic regression to estimate the 
transition probabilities. In the MSLT model, apart from disability status time t, the 
other covariates include age at time t, age squared, sex, and interactions between 
age and sex. For the T-SMP model, the duration is included as a continuous inde
pendent variable, and the age is recorded at the start of the duration with the rest 
of the covariates the same. The T-DDMSLT models are similar except that dura
tion is treated as a categorical variable. The resulting age- and duration-specific 
transition probabilities are combined with the respective baseline in a multistate 
life table to estimate disability-free life expectancy. Bootstrap resampling from the 
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Table 1  Characteristics (N and %) of the sample for birth cohort 1936–1945

Full Data Truncated 3 Truncated 5 No Unknown

A. Baseline at Age 65
  N 6,897 6,420 6,039 1,804
  Disability-free (all) 6,042 5,520 5,009 556
    0 320 393 445
    1 52 52 52
    2 31 31 31
    3/3+ 5,117 19 19
    4 9 9
    5/5+ 4,505 0
  Disabled (all) 855 900 1,030 1,248
    0 460 702 1,159
    1 56 56 56
    2 19 19 19
    3/3+ 365 9 9
    4 4 4
    5/5+ 240 1
  Sex (%)
    Male 44.6 43.7 43.0 40.5
    Female 55.4 56.3 57.0 59.5
  Race and ethnicity (%)
    White 71.6 72.1 72.8 65.2
    Black 16.2 15.8 15.4 19.7
    Hispanic 10.0 9.9 9.6 12.5
    Other 2.2 2.2 2.2 2.6
  Educational attainment (%)
    Below high school 22.8 22.4 22.0 30.7
    High school 36.9 37.0 37.3 36.0
    Above high school 40.2 40.6 40.7 33.3
B. Transitions Between 65 and 80
  Number of transitions (all durations) 104,502 84,269 73,158 24,290
    HH 84,126 66,788 56,798 11,759
    HU 3,870 3,265 2,959 1,448
    HD 1,219 1,054 956 302
    UH 2,738 2,319 2,228 2,146
    UU 11,462 9,852 9,258 7,804
    UD 1,087 991 959 831
  Age (average) 68.9 70.5 71.4 71.5
  Sex (%)
    Male 42.7 42.2 41.9 39.5
    Female 57.3 57.8 58.1 60.5
  Race and ethnicity (%)
    White 72.6 72.9 72.8 65.5
    Black 15.2 15.0 14.9 18.4
    Hispanic 9.9 9.9 10.0 13.5
    Other 2.2 2.2 2.2 2.6
  Educational attainment (%)
    Below high school 21.1 20.9 20.9 29.7
    High school 36.8 36.8 36.8 35.6
    Above high school 42.0 42.3 42.3 34.6

Note: “H” represents healthy/disability-free, “U” unhealthy/disabled, and “D” dead.

Source: Authors’ calculations based on Health and Retirement Study, 2000–2020 (2023).
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original dataset is used to generate confidence intervals. All calculations are done in 
R 4.3.0 (R core team 2023) and can be replicated (see https:​/​/github​.com​/tyaSHEN​ 
/HLEmarkov).

Results

In Figures 3 and 4, we present estimated transition probabilities among males uti
lizing various models and data samples. Figure 3 delineates age-specific transition 
probabilities from 65 to 80 estimated using the MSLT model with full data, stratified 
by the current health state for the cohort born between 1936 and 1945. The left panel 
illustrates disability-free states, while the right panel portrays disability states. Col-
ored lines denote the probability of transitioning to the subsequent state. For instance, 
the probability of remaining disability-free (indicated by the red line in the left panel) 
stands at approximately 95% at age 65.

Figure 4 illustrates the probabilities of remaining healthy (panel a) and unhealthy 
(panel b) for males at age 70 for each sample and model. Markov MSLT probabilities 
are calculated on each subsample and displayed in each panel to show the effect of 
data loss in each model. Notably, these probabilities are similar between the full and 
truncated samples, but significantly lower in the sample with all left-censored obser­
vations discarded. The disparity in probabilities between T-SMP and T-DDMSLT 
arises partly from T-SMP treating duration as a continuous function. In T-DDMSLT, 
retention probabilities exhibit moderate fluctuations over initial durations before 
gradually increasing, while T-SMP shows a smoother increase with expanding con
fidence intervals. Retention probabilities in both T-SMP and T-DDMSLT models are 

Healthy Unhealthy

65 70 75 80 65 70 75 80
.00

.25

.50

.75

1.00

Age

Pr
ob
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ty

Next state: Healthy Unhealthy Dead

Fig. 3  Age-specific transition probabilities for the male cohort 1936–1945 with MSLT (full data). Shading 
represents 95% confidence intervals. Source: See Table 1.
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1724 T. Shen and J. O’Donnell

notably lower for shorter durations compared with MSLT, increasing with duration. 
This demonstrates duration dependence in the transition risk, with individuals most 
likely to transition in the first 1–2 years.

While both panels exhibit fluctuations in initial durations, the likelihood of 
remaining disabled (Figure 4, panel b) increases slightly faster than the probability 
of remaining disability-free (panel a). For instance, in the T-SMP, the probability 
of staying disabled at duration 5 is significantly higher than the probability at dura­
tion 0. Additionally, the transition probability at the truncation duration surpasses the 
MSLT estimate, suggesting higher stickiness for long-term states but greater fluidity 
for short-term states compared with the Markov MSLT model. In the T-DDMSLT-H 
model, which records past periods of disability, duration 4 (or 6) in panel a represents a 
special state: disability-free without a history of disability. By separating individuals 

Full Truncated 3 Truncated 5 No unknown

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
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a. Staying healthy (HH)

b. Staying unhealthy (UU)

Model: MSLT T−DDMSLT T−DDMSLT−H T−SMP
Fig. 4  Transition probabilities for different models at age 70 for the male cohort 1936–1945. In panel a, last 
duration in the model T-DDMSLT-H refers to the special state: healthy without history of unhealthy events 
recorded within the truncation of years. Error bars represent 95% confidence intervals. The T-SMP model 
is used to estimate the subsample with no unknown duration. Source: See Table 1.
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with and without any history, the probability of remaining disability-free for dura
tion 3 (or 5) and above is much lower than in the T-DDMSLT model, indicating that 
individuals with a history are likely frailer and more prone to transitioning out of the 
disability-free state. Therefore, separating groups with and without a history of dis
ability could lead to more robust and realistic estimations.

Applying transition probabilities to the different models yields estimates of 
healthy and unhealthy life expectancies (HLE and ULE, respectively). Table 2 shows 
the 15-year partial life expectancy from 65 to 80 by sex, while Table A2 in the online 
appendix presents results for older cohorts aged 75–90. Columns display partial  
life expectancy estimates using the different models and performed on each of the 
datasets required to run the Markov and duration-dependent models. The methods 
are comparable within each column, so the differences in life expectancy across rows 
derive from the data samples. Thus, differences in results using the Markov MSLT 
(columns 1–3) relative to the first row of results measure errors introduced by dis-
carding the observations necessary to run the duration-dependent models. Taking the 
males in Table 2 as an example, dropping all left-censored observations (required for 
T-SMP) significantly affects the Markov MSLT estimates: HLE decreases by 37% 
(from 11.5 to 7.3 years), ULE more than doubles (from 1.8 to 4.0 years), and the pro
portion of disability-free life declines from 87% to 65%. The T-SMP model (columns 
4–6) estimates remain nearly identical to the Markov estimates (columns 1–3) on the 
reduced dataset, so do not compensate for the data loss.

The samples for the proposed truncated models substantially reduce the differ
ence in life expectancy compared with the T-SMP model. Markov estimates of life 
expectancy are nearly identical between those performed on the full data and those 
on Truncated 3 (columns 1–3). Truncated 5 produces slightly smaller estimates of 
HLE (11.3 vs. 11.5 years) and higher estimates of ULE (1.9 vs. 1.8 years) for males 
in Table 2. These gaps between Truncated 5 and full data are slightly more noticeable 
when estimating HLE in older cohorts (see section 2 of the online appendix 2). It is 
important to acknowledge that they are likely a reflection of a real bias, introduced 
by discarding a disproportionately larger number of survey respondents who were 
healthy on entering the study.

The semi-Markov models on the same truncated datasets produce near identical 
results as the Markov model in columns 1–3, indicating that model choice is less of an 
issue and that the effects of duration on the transition probabilities average out over 
duration when measuring expectancies.

Discussion and Conclusion

Observable differences in multistate transition probabilities arise when duration 
dependence is considered. In our case, the probabilities of remaining in the same 
healthy or unhealthy state increase over duration. These trends are consistent with 
findings from previous studies, including those by Cai et al. (2006) and Cai et al. 
(2008), and warrant the past and continued scholarly attention to how duration 
dependence can be understood and measured. Duration itself may not be the under
lying cause of these patterns, though accounting for duration may still help con
trol for unobserved drivers. Regardless, duration dependence did not translate into 
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1727Modeling Disability-Free Life Expectancy With Duration Dependence

differences in HLE in this study. Importantly, the features of the study and sample 
have allowed Markov probabilities to average out the effects of duration dependence. 
The differences we observe are primarily driven by the treatment of left-censored 
observations. Given the cost of duration-dependent models in terms of data loss, the  
Markov MSLT is perhaps the best choice for estimating life expectancies in this 
study, even in the presence of duration dependence. Yet, duration-dependent models 
may produce more realistic results if the research focus is on outputs other than life 
expectancy, such as the number and patterns of transitions.

Whether duration dependence impacts life expectancy in other contexts may depend 
on the circumstances. In this study, the MSLT averages out the impacts of duration 
dependence, resulting in comparable life expectancy estimates with and without explic
itly modeling duration dependence. However, duration dependence could have a greater 
bearing when specific subpopulations are studied and compared, as well as in research 
contexts in which duration dependence is a more important influence, including, for 
example, contraceptive use and marital status (Schoen 2021; Steele et al. 2004). Future 
research should therefore continue to explore the presence and influence of duration 
dependence on the measurement of health and societal outcomes.

The proposed truncated duration-dependent model is a pragmatic option for 
exploring and accounting for duration dependence. Discarding all left-censored 
observations heavily biases samples away from relatively healthy populations, as 
seen in our example. The Cai et al. (2006) imputation approach for unknown dura
tions is a methodological advance but may be impacted by systematic differences 
between left- and non-left-censored observations. Such differences place doubt on the 
implicit assumption that left-censored observation are missing at random (Dempster  
et al. 1977). While not claiming superiority over their imputation approach, our trun
cated DDMSLT model is viable, easy to implement, and a useful addition to the  
multistate toolkit. Future research could explore combining truncation and impu
tation approaches by imputing observations below the truncation point rather than 
dropping them, preventing data loss while strengthening the missing at random 
assumption validity by reducing differences between observations with and without 
missing durations.

A key limitation of the proposed model is the assumption that duration becomes 
irrelevant after a specific truncation point. These points represent a crucial trade-off 
between data loss and reimposing the Markov assumption. Higher truncations risk 
increased data loss and bias, while lower points nullify duration dependence model
ing. Although we have not specified criteria, data-driven approaches for selecting trun­
cation points are possible but require extended observation periods to identify if and 
when duration dependence disappears. A further limitation is that our data and approach 
incorporate no historical health information prior to the current state and potentially fail 
to fully capture health episodes and trajectories between survey waves. Arguably, these 
issues are intrinsic to the complexity of individual health trajectories and the limitations 
of data-gathering processes (Wolf and Gill 2009). Future research could nevertheless 
explore duration-dependent models that allow for transitions between intervals, such as 
the embedded Markov chain model proposed by Laditka and Wolf (1998).

In conclusion, we find duration dependence in the different models tested. How-
ever, in estimating healthy life expectancy in this study, any bias induced by not 
considering duration dependence is not so serious when the sample for the estimation 
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1728 T. Shen and J. O’Donnell

is the same. As discussed by Guo (1993), the left-censored data are practically an 
intractable issue. There is no gold standard model without specific assumptions and 
limitations. The standard MSLT can produce comparable estimates to the different 
duration-dependent models and at the least cost in terms of data loss. Where that is 
not the case, the truncated DDMSLT proposed in this study is a viable, pragmatic, and 
parsimonious compromise that explicitly allows researchers to find the appropriate 
trade-off between data loss and duration dependence. ■
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